Description: Mathematical Foundations of Public Key Cryptography by Xiaoyun Wang, Guangwu Xu, Mingqiang Wang, Xianmeng Meng Estimated delivery 3-12 business days Format Paperback Condition Brand New Description Based on the research experience of the authors, this book provides a theoretical structure of fundamental number theory and algebra knowledge supporting public-key cryptography. The authors integrate the results and thinking from more than 20 years of research and teaching, bridging the gap between math theory and crypto practice. It can be use Publisher Description In Mathematical Foundations of Public Key Cryptography, the authors integrate the results of more than 20 years of research and teaching experience to help students bridge the gap between math theory and crypto practice. The book provides a theoretical structure of fundamental number theory and algebra knowledge supporting public-key cryptography.Rather than simply combining number theory and modern algebra, this textbook features the interdisciplinary characteristics of cryptography—revealing the integrations of mathematical theories and public-key cryptographic applications. Incorporating the complexity theory of algorithms throughout, it introduces the basic number theoretic and algebraic algorithms and their complexities to provide a preliminary understanding of the applications of mathematical theories in cryptographic algorithms. Supplying a seamless integration of cryptography and mathematics, the book includes coverage of elementary number theory; algebraic structure and attributes of group, ring, and field; cryptography-related computing complexity and basic algorithms, as well as lattice and fundamental methods of lattice cryptanalysis.The text consists of 11 chapters. Basic theory and tools of elementary number theory, such as congruences, primitive roots, residue classes, and continued fractions, are covered in Chapters 1-6. The basic concepts of abstract algebra are introduced in Chapters 7-9, where three basic algebraic structures of groups, rings, and fields and their properties are explained. Chapter 10 is about computational complexities of several related mathematical algorithms, and hard problems such as integer factorization and discrete logarithm. Chapter 11 presents the basics of lattice theory and the lattice basis reduction algorithm—the LLL algorithm and its application in the cryptanalysis of the RSA algorithm.Containing a number of exercises on key algorithms, the book is suitable for use as a textbook for undergraduate students and first-year graduate students in information security programs. It is also an ideal reference book for cryptography professionals looking to master public-key cryptography. Author Biography Dr. Xiaoyun Wang is a professor at the Institute of Advanced Study, Tsinghua University, China. She is also the director of the Center for Cryptology Study at Tsinghua University and an adjunct professor in the Key Lab of Cryptographic Technology and Information Security at Shandong University, China.Dr. Guangwu Xu is an associate professor in the Department of Electrical Engineering and Computer Science, University of Wisconsin-Milwaukee. Dr. Xus research concerns the efficiency, security, and reliability of information processing. He is interested in the fundamental problems of these aspects. Dr. Mingqiang Wang earned his PhD degree in 2004 from Shandong University, China where he serves as a professor now. Dr. Wang is a member of the Chinese Association for Cryptologic Research, his research focuses on number theory and analysis and design of public key algorithms.Dr. Xianmeng Meng earned her bachelors and masters degrees from Jilin University in 1993 and 1996 respectively, then graduated with a PhD degree from Shandong University, China. She is a member of the Chinese Association for Cryptologic Research and is currently a professor in Shandong University of Finance and Economics, her main research interest is number theory and cryptography. Details ISBN 0367575434 ISBN-13 9780367575434 Title Mathematical Foundations of Public Key Cryptography Author Xiaoyun Wang, Guangwu Xu, Mingqiang Wang, Xianmeng Meng Format Paperback Year 2020 Pages 236 Publisher Taylor & Francis Ltd GE_Item_ID:141539285; About Us Grand Eagle Retail is the ideal place for all your shopping needs! With fast shipping, low prices, friendly service and over 1,000,000 in stock items - you're bound to find what you want, at a price you'll love! Shipping & Delivery Times Shipping is FREE to any address in USA. Please view eBay estimated delivery times at the top of the listing. Deliveries are made by either USPS or Courier. We are unable to deliver faster than stated. International deliveries will take 1-6 weeks. NOTE: We are unable to offer combined shipping for multiple items purchased. This is because our items are shipped from different locations. Returns If you wish to return an item, please consult our Returns Policy as below: Please contact Customer Services and request "Return Authorisation" before you send your item back to us. Unauthorised returns will not be accepted. Returns must be postmarked within 4 business days of authorisation and must be in resellable condition. Returns are shipped at the customer's risk. We cannot take responsibility for items which are lost or damaged in transit. For purchases where a shipping charge was paid, there will be no refund of the original shipping charge. Additional Questions If you have any questions please feel free to Contact Us. Categories Baby Books Electronics Fashion Games Health & Beauty Home, Garden & Pets Movies Music Sports & Outdoors Toys
Price: 73.6 USD
Location: Fairfield, Ohio
End Time: 2024-11-22T01:55:26.000Z
Shipping Cost: 0 USD
Product Images
Item Specifics
Restocking Fee: No
Return shipping will be paid by: Buyer
All returns accepted: Returns Accepted
Item must be returned within: 30 Days
Refund will be given as: Money Back
Format: Paperback
ISBN-13: 9780367575434
Author: Xiaoyun Wang, Guangwu Xu, Mingqiang Wang, Xianmeng Meng
Type: NA
Book Title: Mathematical Foundations of Public Key Cryptography
Language: Does not apply
Publication Name: NA